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Abstract

Behavioral economics has made progress in recent years in identifying and testing
interventions that can improve preventative health behaviors, such as handwashing.
We review this evidence and suggest how it could be leveraged to mitigate the current
outbreak of the novel coronavirus. We then describe how the impact of these interven-
tions could be maximized using insights from infectious disease epidemiology. First,
the nonlinear dynamics of disease transmission imply that saturation, i.e. the share
of individuals in a community who adhere to protective behaviors, is an important
determinant of impact. Saturation should therefore be systematically included in inter-
vention design and evaluation. Moreover, contagion processes can themselves be used
to maximize the spread of protective information and behaviors. Finally, infectious
disease transmission is temporally complex, but interventions are often evaluated using
snapshot measurements. This can lead to erroneous conclusions, and underscores the
importance of careful measurement over time.

∗We thank Dan Björkegren, Arun Chandrasekhar, Jonathan de Quidt, Bryan Grenfell, Reshma Hussam,
and Seema Jayachandran for comments.

†Department of Psychology and Woodrow Wilson School of Public Affairs, Princeton University; Na-
tional Bureau of Economic Research; Busara Center for Behavioral Economics; and Max-Planck-Institute
for Collective Goods. haushofer@princeton.edu

‡Department of Ecology and Evolutionary Biology and Woodrow Wilson School of Public Affairs, Prince-
ton University. cmetcalf@princeton.edu

1

mailto:haushofer@princeton.edu
mailto:cmetcalf@princeton.edu


COVID-19 is a clear threat to global health. The only approaches cur-
rently available to reduce transmission are behavioral: handwashing, cough
and sneeze etiquette, and social distancing. Behavioral economics has made
significant strides in identifying inexpensive approaches to improving adher-
ence to such behaviors, especially in resource-poor settings, which are expected
to be particularly affected by the outbreak. The power of this body of work is
that it is grounded in careful experimental design and empirical measurement,
often using large-scale randomized controlled trials in field settings. However,
this approach has not fully taken advantage of the essentially dynamic nature
of epidemics. The novel coronavirus outbreak therefore challenges scientists
and policy-makers to combine the advantages of this approach with the theory
of infectious disease dynamics. This synthesis is of particular urgency for the
development and deployment of interventions to combat COVID-19, but also
for preparedness for future emergence events.

A variety of interventions is available to modify behaviors relevant to re-
ducing pathogen transmission. Here we consider how their costs and benefits
intersect with two features of infectious disease dynamics: the nonlinear dy-
namics of transmission, and the time-course of outbreaks.

Light-touch behavioral interventions are often surprisingly effective and
low-cost, both in absolute terms, and relative to the outcomes they achieve.
These approaches work particularly well for behaviors that people want to en-
gage in, but find hard to follow through because of forgetfulness, inattention,
or procrastination. For example, simple text message reminders increase ad-
herence to antiretroviral drugs in Kenya from 40 to 53 percent (Pop-Eleches
et al., 2011). A study in Sierra Leone showed that colored bracelets with
which parents could signal that they completed the full course of vaccinations
for their children increased completion rates from 54 to 62 percent (Karing,
2018). Small financial or in-kind incentives, such as a bag of lentils given for
vaccinating children, or a small payment for collecting HIV test results, have
been found to increase these behaviors, likely because the payments overcome
procrastination rather than a large cost of the behavior itself (Banerjee, Du-
flo, Glennerster, & Kothari, 2010; Thornton, 2008). A psychological “imagin-
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ing the future” intervention in Kenya increased rates of chlorine in household
drinking water from 22 to 28 percent (Haushofer, John, & Orkin, 2019).

Such interventions are strikingly cost-effective, and are often easy to de-
ploy. For example, even the comparatively involved psychology intervention
to increase chlorination only cost $1.33 per child. Similar interventions could
be used to increase desirable behaviors in the COVID-19 outbreak. For exam-
ple, a recent study in India found that 23% of households in which low-cost
soap dispensers were installed used these dispensers daily at dinnertime (Hus-
sam, Rabbani, Reggiani, & Rigol, 2017), an encouraging estimate in light of
the importance of handwashing in containing COVID-19. Another study in
India found that a hygiene promotion campaign based on emotional messag-
ing, rather than information provision, increased handwashing (Biran et al.,
2014). A study in Iraq showed that embedding toys in children’s hand soap
also increased handwashing (Watson et al., 2019).

However, these behavioral interventions often do not bring adherence to
very high levels: usage rates remain relatively low even among those treated.
Economic incentives, such as payments conditional on engaging in desired
behaviors, can be combined with nudges to make them more effective; for
example, the study by Hussam et al. added a condition in which participants
received vouchers for household goods if they used the dispenser. At the same
time, this modification also increases the cost of the intervention.

We propose that the contagion process of infectious disease transmission
can improve the effectiveness of psychological and economic interventions. In
the context of disease transmission, individuals who do not directly receive the
treatment may still benefit from indirect protection from their neighbors: each
protected person also reduces the risk of exposure for those they encounter.
Importantly, these indirect effects may differ by saturation level, i.e. the share
of a community that receives the intervention. Standard models from infec-
tious disease epidemiology suggest strongly increasing returns to coverage in
terms of protection (Keeling & Rohani, 2011). In Fig. 1, we use a standard
SIR model to plot the number of infected individuals in an outbreak as a func-
tion of time. The red-shaded curve, and the red bar in the inset bar chart,
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describes the time-course of the outbreak for untreated communities. Deliver-
ing an intervention to 20% of a community leads to a moderate reduction in
the size of the outbreak, shown in blue. In contrast, increasing the coverage to
60%, shown in purple, generates a more-than-proportional reduction in out-
break size, due to the nonlinear dynamics of infection arising from depletion of
susceptibles. These nonlinear returns to saturation are typically neglected in
tests of behavioral (and other) interventions, because studying them requires
variation in spatial saturation of intervention delivery. For example, groups
of 15 villages might be randomized to a “low-saturation” condition in which a
third of villages and households are treated, or to a “high-saturation” condition,
in which two thirds of villages and households are treated. This approach has
been demonstrated by recent large-scale studies on the general equilibrium ef-
fects of economic interventions (Egger, Haushofer, Miguel, Niehaus, & Walker,
2019; Muralidharan, Niehaus, & Sukhtankar, 2020). Thus, tests of behavioral
interventions to combat COVID-19 should take advantage of, and measure,
these nonlinear effects of saturation.

The contagious dynamics of transmission can also be leveraged in another
sense: Behavioral interventions will be even more effective if they themselves
“go viral”. Higher levels of saturation can be achieved not only through in-
creased treatment effort, but also when good behaviors are transmitted from
treated individuals to others. Note that this spillover effect in terms of adop-
tion is separate from spillovers in terms of disease transmission: For example,
distributing information about good hygiene practices both decreases trans-
mission from targeted individuals, and may increase adoption of good hygiene
practices by others. Existing evidence suggests several ways in which such in-
formation and adoption spillovers can be maximized. For example, targeting
individuals who are central in a network (Kim et al., 2015), or good at spread-
ing information according to their peers (Banerjee, Chandrasekhar, Duflo, &
Jackson, 2019), can increase the “virality” of the information. In addition,
cleverly incentivizing individual people to spread information through a so-
cial network can be highly effective in facilitating transmission (Pickard et al.,
2011). The power of these approaches lies in the fact that they can create a
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“dueling contagion” that can beat a virus at its own game (Fu, Christakis, &
Fowler, 2017).

A final insight from epidemiology which can inform interventions and stud-
ies to combat COVID-19 is by taking into account the time-course of the out-
break. Field experiments often measure the effect of interventions on current
or recent adherence to desirable behaviors, or current or recent infection. How-
ever, standard epidemiological models suggest that interventions that reduce
transmission will have different treatment effects at different points in time. In
Fig. 2, we show the time-course of infections in a hypothetical control group
(red), and a hypothetical treatment group (blue). The treatment is highly ef-
fective, as can be seen in the lower total size of the outbreak (bar graph inset).
However, the intervention also has the effect of spreading the infections over
time. As a result, snapshot measurements at single or multiple timepoints,
say, 6 months after the intervention, may lead to treatment effect estimates
that differ markedly from the total size. Indeed, the observed effect can even
go in the opposite direction of the true total effect. Thus, careful measurement
at multiple timepoints, or use of biomarkers (serology) that provide a measure
of ever having been exposed (Metcalf et al., 2016), can capture the full effect
of interventions on outbreaks.

The fact that a “successful” intervention has the effect of spreading the
infections over time also suggests an important caveat: the desirable behav-
iors induced by any intervention may have to be maintained for longer to
outlast the duration of the outbreak. This fact may impose psychological
and economic costs on the population that are larger than those which would
be incurred in a more temporally condensed outbreak. At the same time, a
temporally extended outbreak may provide more opportunity for habit forma-
tion around the desirable behaviors, potentially strengthened by behavioral
interventions to promote habit formation (Hussam et al., 2017). Such effects
would partially offset the costs of an extended outbreak, and also have posi-
tive broader health effects. In addition, a suppressed but extended outbreak
has a lower risk of overburdening the health system a scenario of particular
concern in the case of COVID-19.
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Behavioral economics and infectious disease epidemiology have made tremen-
dous strides in recent years in understanding and creating behavior change,
and in understanding the dynamics of outbreaks. If policy-makers and scien-
tists can combine the strengths of both approaches, they will have a powerful
tool for reducing transmission in outbreaks. The speed required to inform
interventions on time-scales relevant to the current COVID-19 pandemic is
challenging, but powerful behavioral interventions are often strikingly simple
to deploy, the research tools required to appropriately interpret their effects
are available, and the rewards of will be considerable.
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Figure 1: Accounting for spillovers
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Notes: Time course of infection where different fractions of the population are treated. As the proportion of the population treated increases, total incidence declines nonlinearly
(right panel) as a result of the effects of indirect protection.
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Figure 2: Accounting for time
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Notes: Time course of infection in the absence of an intervention (red) and with a behavioral treatment (blue). Measurement of the effect of the intervention occurring 3, 6, or 9
months after the start of the outbreak (lower panels) can be misleading, with the treatment appearing to inflate cases for later measurements simply as a result of the way it slows
down the outbreak. The total number of cases (right panel) provides an appropriate measure of the impact of the treatment on incidence alone.
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